用于医疗DCDC转换器的安全标准 – 全文

用在许多的事物上。在许多情况下,电子设备的电源需要电气隔离。本文将解释为什么在这些情况下需要电气隔离,同时介绍所需的安全标准,并以板载

在欧盟,医疗器械必须符合MDD指令93/42/EEC Article 3的要求,市场上的产品必须符合ArTIcle 3、ER1、Annex I、Annex II、Annex III及Annex VII的风险分析指定要求。这是为了确保设备的安全性和基本性能,特别是要保护操作员和患者免受电击。如果产品符合ES/EN/IEC 60601-1(目前为第4版),则推定产品符合标准。

医疗应用中使用的AC/DC转换器需要高级别的防触电保护的原因显而易见,dc伤亡如果手术期间没有高级别的防触电保护,高压交流电可能会直接接触到患者、甚至是患者器官,形成致命的安全隐患。医疗安全标准为操作员和患者明确地定义了两个等级的隔离或保护措施(MOP)。每个等级必须有两个MOP,分别是2MOOP和2MOPP。针对医疗设备是否和患者直接接触又分为三个进一步的定义:

与所有安全标准一样,环境因素也会影响隔离特性,例如系统电压、污染程度、过电压等级以及海拔高度。是否有功能性接地(FE)或保护接地(PE)、都是重要的因素。

在医疗设备中,通常需要DC/DC转换器,把输入电压转换为电路中所需的实际值,用来驱动诸如传感器的外围设备。该DC/DC转换器的输入电压来源于电池或AC/DC的电源,在大多数的情况下,DC/DC输入是低电压,如5V或12V,并以低电压输出,如+/-5V或3.3V。尽管输入和输出电压很低并且在“安全”电压的定义范围内,且从功能来说不一定需要隔离,但是隔离可以断开输入和输出的地回路以帮助控制电磁干扰(EMI)或产生负电压,并且出于安全原因仍然必须要有隔离。

交流供电的医疗设备必须使用具有隔离系统的“医疗认证”电源以满足应用要求,例如符合欧洲的IEC 60601标准的2 x MOOP或2 x MOPP要求,以及美国的ANSI/AAMI ES 60601标准。这些电源的市场有限,因此通常比工业或商业电源更昂贵,选择也相对有限。

如果要使用价格更低、有IT安全标准认证(如EN 60950-1或EN 62368-1)的大众市场产品,有一种方法是“串”在一起(图1)加强隔离等级来达到安全标准的要求。AC/DC输出与接触到操作员或患者的电路之间的DC/DC转换器可以提供另一层隔离。总体成本可能远低于购买认证的专用医疗用品。但是,医疗设备中的漏电流的也有明确的规定,而绝大部份的IT级电源会超出医疗电源标准的要求。

可以在AC/DC中减少或去除线路与地之间的‘Y’型电容器来减少漏电流,但这是以牺牲EMI作为代价,因此必须通过其他的方式来抑制EMI。符合IEC 60950-1的AC-DC仅针对保护操作员,但在医疗环境中,AC线路和中性线必须有保险丝,每个熔断容量为1500A。此外,系统必须遵守最新版本的IEC 60601(第4版)所修订的EMC规范,因此使用IT级电源来替代医疗电源不见得是一个简单的方案。

医疗系统风险评估的其中一个安全要求是必须考虑到设备故障。最糟糕的情况是患者或操作员成为接触到故障设备的导体,即发生“单一失效状态”(SFC),如果电流通过人体流向地面,则可能会导致人员伤亡。因此设备与患者的接触必须与地隔离,隔离程度须达到指定的级别。“与地隔离”是一种相对的衡量标准;通过连接多个设备,从患者到地总是会有一些杂散或寄生电容,容许约50/60Hz的电流。由于不同路径的电流会累加,因此标准规范每个源头仅能有非常低的电流(图2)。

DC/DC转换器通常作为额外的隔离以提供单一失效状态的保护。设备可以是交流线供电、满足class I或class II要求的设备、或电池供电、手持的,以及任何未指定的连接,例如通过以太网连接到网络,或者通过USB连接到数据记录器或打印机。电缆可能有或没有屏蔽,也可能有或没有接地。因此,DC/DC的隔离级别的规范不是那么容易制定的。图3为DC/DC转换器的例子,用于class II设备(无接地、塑料外壳)。这里主要的AC/DC隔离(B)为2 x MOOP保护,而在总体需2 x MOPP的 BF或CF情况中,为接触患者身体部件供电的DC/DC仅需1 x MOPP。请注意,DC/DC隔离必须满足额定系统电压(在这种情况下为240VAC),塑料外壳的厚度必须至少1mm并具有恰当的电气额定值,并且没有其他的外部器件或设备连接到低压电路。

另一个例子如图4所示,class I(接地)、金属外壳、AC输入的设备供电给与患者接触的BF或CF的触身部件。设备电源的低压侧(SIP/SOP)也有未指定的输入/输出信号连接到其他的外部设备。

在该示例中,请注意,即使240VAC(B)的主隔离是2 x MOOP,DC/DC转换器(D)仍需要2 x MOPP,因为存在未指定的连接,因此AC/DC转换器的低压48V输出侧,在系统电压(240VAC)下故障的情况也须纳入考虑之中。因此,DC/DC转换器(D)的隔离额定值必须还是240VAC。DC/DC输出也必须与1 x MOPP的金属外壳(E)隔离。如果设备电源的低压侧(SIP/SOP)连接被指定为对系统电压具有2 x MOOP隔离,并且不能被意外地替换,则隔离屏障D可以减小到1 x MOPP。图中的“BOP”是AC线和中性线之间的“基本反极性”隔离。

正常和单一失效条件下的隔离能力和漏电流是医疗级DC/DC转换器的应用主要要求,除此之外它受限于产品的内部变压器温度,材料可燃性和所有可能发生的危险例如火灾、烟雾、燃烧和机械故障等都必须在风险分析中加以考虑。

在微型DC/DC转换器中,特别是在变压器周围和内部,同时满足必须的爬电距离和电气间隙非常具有挑战性。在变压器中利用物理间距来达到适当的隔离级别是不太可能的。需要专业技术,包括使用三层绝缘线(TIW)来形成重叠的三层导线绝缘层。杂散电容的漏电流通常很低,但是DC/DC可能需要一些额外的外部输入-输出电容来符合抑制系统共模噪声的规定。如果安装了这些电容,电容会跨越隔离层,而且必须使用正确的安规‘Y’型电容以保持低漏电流来满足预期应用。因此,会优先选择低EMI的DC/DC转换器。

RECOM[1]通过低成本的REMxE系列解决了医疗应用的DC/DC转换器的设计挑战。转换器使用贴片器件完成DIP24封装,额定功率为3.5W、5W以及6W。输入范围为2:1,标称电压为5V、12V、24V以及48V,提供一系列稳压单输出和双输出的选择。该系列所有产品在250VAC时均有2 x MOPP额定值,内、外部爬电距离和电气间隙均》8mm,最大漏电流为1μA。工作温度范围为-40℃

至+85℃,3.5W转换器无降额,而5W和6W的分别从80℃和75℃开始降额。

板载隔离式DC/DC转换器是实现医疗设备安全评级的重要辅助,RECOM以优势的价格提供符合法规及标准的商业解决方案。

UCC28064A交错式PFC控制器具有比以前更高的额定功率。该设备使用Natural Interleaving™技术。两个通道都与主机(没有从通道)同步到同一频率。这种方法可以实现更快的响应时间,出色的相间导通时间匹配以及各个通道的过渡模式操作。该器件具有突发模式功能,可实现高轻载效率。突发模式消除了在轻负载操作期间关闭PFC以满足待机功率目标的需要。当与UCC25630x LLC控制器和UCC24624同步整流器控制器配对时,突发模式消除了对辅助反激转换器的需要。 扩展的系统级保护功能包括输入欠压和压差恢复,输出过压,开环,过载,软启动,相位故障检测和热关断。额外的故障安全超过电压保护(OVP)功能可防止中间电压短路,如果未检测到,可能会导致灾难性设备故障。先进的非线性增益可以快速,平稳地响应线路和负载瞬态事件。专线 – 丢失处理可避免重大的电流中断。在突发模式操作期间不切换时,偏置电流的大幅减少可提高待机性能。 特性 输入滤波器和输出电容纹波电流降低 降低电流纹波,实现更高的系统可靠性和更小的大容量电容器 降低EMI滤波器 高轻载效率 用户可调节相位管理和输入电压补偿 突发模式操作具有可调节的突发阈值 帮助实现…

UCC28951器件是UCC28950的增强版本。它是UCC28950的完全兼容的直接替代品。请参阅应用说明SLUA853以确定要使用的控制器。除了主动控制同步整流器(SR)输出级之外,UCC28951还使用全桥的高级控制。 可编程延迟确保ZVS在各种工作条件下工作,而负载电流自然会调整次级侧同步整流器(SR)的开关延迟。此功能可最大限度地提高整体系统效率。 UCC28951具有许多轻载管理功能,包括突发模式操作和动态SR ON和OFF控制,可在转换到不连续电流模式(DCM)操作期间进行控制。该器件工作在电流模式或电压模式控制。开关频率最高可编程为1 MHz。该器件具有保护功能,包括逐周期电流限制,UVLO和热关断。 24引脚TSSOP封装符合RoHS要求。 特性 增强型零电压开关(ZVS)范围 直接同步整流器(SR)控制 轻载效率管理包括: 突发模式操作 不连续导通模式(DCM),具有可编程阈值的动态SR开/关控制 可编程自适应延迟 具有可编程斜率补偿和电压模式控制的平均或峰值电流模式控制 闭环软启动和启用功能

具有双向同步的可编程开关频率高达1 MHz (±3%)支持打嗝模式的逐周期电流限制保护 150-μA启动电流…

UCC24624高性能同步整流器(SR)控制器专用于LC谐振转换器,用SR MOSFET取代有损二极管输出整流器,提高整体系统效率。 UCC24624 SR控制器采用漏极 – 源极电压检测方法实现SR MOSFET的开关控制。实现比例栅极驱动以延长SR导通时间,最小化体二极管导通时间。为了补偿由MOSFET MOSFET寄生电感引起的失调电压,UCC24624实现了可调节的正向关断阈值,以适应不同的SR MOSFET封装。 UCC24624具有内置475 ns导通时间消隐功能,并具有650 ns的关断时间消隐功能,可避免SR错误导通和关断。 UCC24624还集成了双通道互锁功能,可防止两个SR同时打开。具有230V电压检测引脚和28V ABS最大VDD额定值,可直接用于转换器,输出电压高达24.75 V.内部钳位允许控制器通过添加外部限流电阻轻松支持36V输出电压在VDD上。 通过基于平均开关频率的内置待机模式检测,UCC24624可自动进入待机模式,无需使用外部组件。低待机模式电流为180μA,可满足现代空载功耗要求,如CoC和DoE法规。 UCC24624可与URC25630x LLC和UCC28056 PFC控制器一起使用,以实现高效率,同时保持出色的轻载和空…

UCC3750源振铃控制器为四象限反激式环形发生器电路提供完整的控制和驱动解决方案。 IC控制初级侧开关,当从输入到输出进行电力传输时,该开关被调制。它还控制两个次级开关,在正功率流动期间充当同步整流器开关。当电源输出到电源时,这些开关是脉冲宽度调制的。 UCC3750有一个板载正弦波参考,可编程频率为20Hz,25Hz和50Hz。该参考源自外部连接的高频(32kHz)晶体。两个频率选择引脚控制内部分压器,提供20Hz,25Hz或50Hz的正弦输出。通过将外部产生的正弦波提供给芯片或通过以所需频率的固定倍数为晶体输入提供时钟,环形发生器也可用于其他频率。 UCC3750中包含的其他功能可编程直流电流限制(带缓冲放大器),用于栅极驱动电压的电荷泵电路,内部3V和7.5V基准电压源,三角形时钟振荡器和缓冲放大器,用于在输出电压上增加可编程直流偏移。 UCC3750还提供了一个非专用放大器(AMP),用于满足其他信号处理要求。 特性 为基于反激的四象限放大器拓扑提供控制 具有低THD的板载正弦波参考 不同电线Hz) 可编程输出幅度和DC偏移 用于短路保护的直流限流 Secondary侧电压模式控制 采用5…

LM25180是一款初级侧稳压(PSR)反激式转换器,在4.5V至42V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压稳压。凭借高度的集成性,可实现简单可靠的高密度解决方案,其中只有一个组件穿过隔离层。通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W的输出功率并提高应对线转换器简化了隔离式直流/直流电源的实施,且可通过可选功能优化目标终端设备的性能。该器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外部可编程启动,可实现更高效率的可选偏置电源连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 LM25180反激式转换器采用8引脚4mm×4mm热增强型WSON封装(引脚间距为0.8mm)。 特性 专为可靠耐用的应用而设计 4.5V至42V的宽输入电压范围 稳定可靠的解决方案,只有一个组件穿过…

UCC3750源振铃控制器为四象限反激式环形发生器电路提供完整的控制和驱动解决方案。 IC控制初级侧开关,当从输入到输出进行电力传输时,该开关被调制。它还控制两个次级开关,在正功率流动期间充当同步整流器开关。当电源输出到电源时,这些开关是脉冲宽度调制的。 UCC3750有一个板载正弦波参考,可编程频率为20Hz,25Hz和50Hz。该参考源自外部连接的高频(32kHz)晶体。两个频率选择引脚控制内部分压器,提供20Hz,25Hz或50Hz的正弦输出。通过将外部产生的正弦波提供给芯片或通过以所需频率的固定倍数为晶体输入提供时钟,环形发生器也可用于其他频率。 UCC3750中包含的其他功能可编程直流电流限制(带缓冲放大器),用于栅极驱动电压的电荷泵电路,内部3V和7.5V基准电压源,三角形时钟振荡器和缓冲放大器,用于在输出电压上增加可编程直流偏移。 UCC3750还提供了一个非专用放大器(AMP),用于满足其他信号处理要求。 特性 为基于反激的四象限放大器拓扑提供控制 具有低THD的板载正弦波参考 不同电线Hz) 可编程输出幅度和DC偏移 用于短路保护的直流限流 Secondary侧电压模式控制 采用5…

LM5180是一款初级侧稳压(PSR)反激式转换器,在4.5V至70V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压稳压。凭借高度的集成性,可实现简单可靠的高密度解决方案,通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W的输出功率并提高应对线转换器简化了隔离式直流/直流电源的实施,且可通过可选功能优化目标终端设备的性能。该器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外部可编程软启动,可实现更高效率的可选偏置电源连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 /p

LM5180反激式转换器采用8引脚4mm×4mm热增强型WSON封装(引脚间距为0.8mm)。 特性 专为可靠耐用的应用而设计 宽输入电压范围:4.5V至70V 稳定可靠的解决方案,只有一个组件穿过隔离层 ±1%的总输出稳压…

LM25180-Q1是一款初级侧稳压(PSR)反激式转换器,在4.5V至42V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压稳压。凭借高度的集成性,可实现简单可靠的高密度解决通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W LM25180-Q1转换器简化了隔离式直流/直流电源的实施,且可通过可选功能优化目标终端设备的性能。器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外可编程软启动,可实现更高效率的可选偏置电源连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 LM25180-Q1符合汽车AEC-Q100 1级标准,并且采用引脚间距为0.8mm且具有可湿性侧面的8引脚WSON封装。 特性 符合面向汽车应用的AEC-Q100标准 器件温度等级1:-40℃至125℃的环境温度范围 专为可靠耐用的应用而设计 4.5V至42V的宽输入电压…

SN74GTLPH16945是一款中等驱动的16位总线收发器,可提供LVTTL到GTLP和GTLP到LVTTL的信号电平转换。它被划分为两个8位收发器。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准TTL或LVTTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全适用于使用I off 的上电插入应用,上电3状态,BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数据,并允许真正的实时插入功能。 该GTLP器件具有TI-OPC电路,可有效限制由于背板不正确,卡分布不均匀或在低到高信号转换期间出现空插槽而导致的…

SN74GTLP2033是一款高驱动,8位,3线注册收发器,可提供反向LVTTL至GTLP和GTLP至LVTTL信号级翻译。该器件支持透明,锁存和触发器数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径,功能与SN74FB2033相同。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( LVTTL接口具有5 V容差 高驱动GTLP漏极开路输出(100 mA) LVTTL输出(\ x9624 mA /24 mA) 可变边沿速率控制(ERC)输入选择GTLP上升和下降时间,以实现分布式负载中的最佳数据传输速率和信号完整性 I off ,上电3状态和BIAS V CC 支持实时插入 分布式V CC 和GND引脚最小化高速开关噪声锁存-Up性能超过每JESD 78 mA,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 1000 -V充电设备型号(C101) OEC,TI-OPC和Widebus是Texas Instruments的商标。 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器…

SN74GTLP1395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 – 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( GTLP是德州仪器Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3的衍生产品。 SN74GTLP1395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF

= 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,文献编号SCEA019和BTL应用中的 GTLP ,文献编号SCEA017。 通常,B端口工…

SN74GTL16616是一个17位的UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。组合的D型触发器和D型锁存器允许透明,锁存,时钟和时钟使能的数据传输模式,与16601功能相同。此外,该器件还提供了GTL /GTL +信号电平(CLKOUT)的CLKAB副本以及GTL /GTL +时钟转换为LVTTL逻辑电平(CLKIN)。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(…

SN74FB1653 具有缓冲时钟线位和9位收发器。时钟和收发器设计用于在LVTTL和BTL环境之间转换信号。该器件专为与IEEE Std 1194.1-1991(BTL)兼容而设计。 A端口工作在LVTTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC (5 V)通常小于2.5 V时,A输出处于高阻态。 B端口工作于BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB)\。当OEB为低电平时,OEB \为高电平,或者V CC (5 V)通常小于2.5 V,B端口关闭。 时钟选择( 2SEL1和2SEL2)输入用于配置TTL到BTL时钟路径和延迟(参见 MUX-MODE DELAY 表)。 BIAS V CC当未连接V CC (5 V)时,在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 V REF 是内部产生的电压源。建议将V REF 与0.1μF电容去耦。 当此设备从AI到A0以大于50的频率运行时,应使用增强的散热技术频率大于100 MHz时,或从AI到B \或B \到A0。 特性 与IE…

GTL2010提供10个NMOS传输晶体管(Sn和Dn),共栅极(G REF )和参考晶体管( S REF 和D REF )。开关的低导通电阻允许以最小的传播延迟进行连接。由于不需要方向控制引脚,该器件允许双向电压转换任何电压(1 V至5 V)至任何电压(1 V至5 V)。 当Sn或Dn端口为低电平时,钳位处于ON状态,Sn和Dn端口之间存在低电阻连接。假设Dn端口上的电压较高,当Dn端口为高电平时,Sn端口上的电压限制为参考晶体管设置的电压(S REF )。当Sn端口为高电平时,通过上拉电阻将Dn端口拉至V CC 。 GTL2010中的所有晶体管都具有相同的电气特性,在电压或传播延迟方面,从一个输出到另一个输出的偏差最小。这提供了优于分立晶体管电压转换解决方案的匹配,其中晶体管的制造不对称。在所有晶体管相同的情况下,参考晶体管(S REF /D REF )可以位于其他十个匹配的Sn /Dn晶体管中的任何一个上,从而实现更简单的电路板布局。具有集成ESD电路的转换器晶体管可提供出色的ESD保护。 特性 提供无方向控制的双向电压转换 允许电压电平从1 V升至5 V 提供与GTL,GTL +,LVTTL /TTL和5-V CM…

SN74FB2040是一款8位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。 B \ port以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为高电平且OEB \为低电平时,B \ n端口有效并反映A输入引脚上存在的数据的反转。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平并有独立的输入和输出引脚。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 引脚TMS,TCK,TDI和TDO均为非功能性的,即不适用于IEEE Std 1149.1(JTAG)测试总线。 TMS和TCK未连接,TDI短接至TDO。 BIAS V CC 在V CC时在BTL输出上建立1.62 V至2.1 V之间的电压未连接。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ – 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC

GTL16612器件是18位UBT ??提供LVTTL到GTL /GTL +和GTL /GTL +到LVTTL信号电平转换的收发器。它们结合了D型触发器和D型锁存器,可实现与16601功能相同的透明,锁存,时钟和时钟使能模式的数据传输。这些器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(

SN74FB2033A是一款8位收发器,在TTL电平A端口上具有分离输入(AI)和输出(AO)总线。通用I /O,集电极开路B \ n端口工作在背板收发器逻辑(BTL)信号电平。 每个方向的数据流逻辑元素由两个模式输入(B-to-A的IMODE1和IMODE0,A-to-B的OMODE1和OMODE0)配置为缓冲区,D-类型触发器或D型锁存器。在缓冲模式下配置时,反向输入数据出现在输出端口。在触发器模式下,数据存储在相应时钟输入(CLKAB /LEAB或CLKBA /LEBA)的上升沿。在锁存模式下,时钟输入用作高电平有效透明锁存器使能。 无论选择何种逻辑元素,
更多精彩尽在这里,详情点击:http://kapululanguculturecamps.com/,苏尔曼B-to-A方向的数据流都由LOOPBACK输入进一步控制。当LOOPBACK为低电平时,B \ -port数据是B-to-A输入。当LOOPBACK为高电平时,所选A-to-B逻辑元件的输出(反转之前)是B-to-A输入。 AO端口启用/-disable控件由OEA提供。当OEA为低电平或V CC 小于2.5 V时,AO端口处于高阻态。当OEA为高电平时,AO端口处于活动状态(逻辑电平为高或低)。 B \ port由OEB和OEB \控制。如果OEB为低电平,OEB \为高电平,或者V CC 小…

SN74FB2031是一款9位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \端口以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口以TTL信号电平工作。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 针对四线(JTAG)测试总线分配引脚,尽管目前还没有计划发布JTAG特性版本。 TMS和TCK未连接,TDI与TDO短路。 当V CC 未连接时,BIAS V CC 在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ – 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC

SN74FB1650包含两个9位收发器,用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \ n端口工作在BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 BIAS V CC 建立当未连接V CC 时,BTL输出上的电压介于1.62 V和2.1 V之间。 BG V CC 和BG GND是电源输入用于偏置发生器。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ – 端口输出接收器100 mA BIAS V CC 最大限度地减少实时插入或拔出期间的信号失真 上电和断电期间的高阻抗状态 B \ – 端口偏置网络预先连接器和PC跟踪到BTL高电平电压 TTL输入结构包含有效在线终止时紧急援助 参数 与其它产品相…

这个八进制ECL到TTL转换器旨在提供10KH ECL信号环境和TTL信号环境之间的有效转换。该器件专门用于提高ECL-to-TTL CPU /总线导向功能的性能和密度,如存储器地址驱动器,时钟驱动器和面向总线的接收器和发送器。 八SN10KHT5574的触发器是边沿触发的D型触发器。在时钟正跳变时,Q输出设置为在D输入端设置的逻辑电平。 缓冲输出使能输入( OE ”可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗第三状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能输入 OE

不会影响触发器的内部操作。输出关闭时,可以保留旧数据或输入新数据。 SN10KHT5574的特点是在0°C至75°C的温度范围内工作。 特性 10KH兼容 ECL时钟和TTL控制输入 流通式架构优化PCB布局 中心引脚V CC ,V EE 和GND配置最大限度地降低高速开关噪声 封装选项包括“小”概述“包装和标准塑料DIP 参数 与其它产品相比 GTL/TTL/BTL/ECL 收发器/转换器   Technology Family VCC (Min) (V) …

SN74GTLP21395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 – 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( Y输出设计用于吸收高达12 mA的电流,包括等效的26- 电阻器可减少过冲和下冲。 GTLP是德州仪器(TI)衍生的Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3。 SN74GTLP21395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF

= 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,…

SN74GTLP1394是一款高驱动,2位,3线总线收发器,可提供LVTTL至GTLP和GTLP至LVTTL信号 – 级别翻译。它允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专门设计用于与德州仪器1394背板物理层控制器配合使用。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全指定用于使用I off 的上电插入应用,上电3 -state和BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数…

SN74GTL1655是高驱动(100 mA),低输出阻抗(12 )16位UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。该器件被划分为两个8位收发器,并结合了D型触发器和D型锁存器,以实现类似于?? 16501功能的透明,锁存和时钟数据传输模式。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(